MASTER MATERIALS AND EQUIPMENT LIST

This Master Materials and Equipment List shows the equipment required to perform the *Structured* version of each lab activity from the *Advanced Physics 2 Lab Manual*. Italicized entries indicate items not available from PASCO. The quantity indicated is per student or group.

Teachers can conduct some lab activities with sensors and probes other than those listed here. For assistance with substituting compatible sensors and probes for a lab activity, contact PASCO Teacher Support (800-772-8700 inside the United States or http://www.pasco.com/support).

Lab	Title	Materials and Equipment	PASCO Part Number	Qty
1	Hydrostatic Pressure Students use a pressure sensor to measure the static pressure at different depths in a column of water and use their data to determine the mathematical relationship between static pressure and depth in a fluid.	FOR EACH STUDENT STATION Data Collection System PASCO Wireless Pressure Sensor Male Luer lock connector* Tubing, 1/8" inner diameter* Four-Scale Meter Stick Water reservoir, transparent, over 40 cm high Distilled water, to fill the reservoir	PS-3203 w/PS-3203 w/PS-3203 SE-8695	1 1 1 60 cm 1 1 2 L
2	BUOYANT FORCE Students use the Smart Cart force sensor to measure the buoyant force on a metal cylinder lowered into a fluid and then determine the relationship between the buoyant force on a submerged object and a) its volume and b) the weight of the fluid displaced by the submerged object.	FOR EACH STUDENT STATION Data Collection System PASCO Smart Cart with hook PASCO Smart Cart Rod Stand Adapter PASCO Overflow Can PASCO Aluminum Table Clamp Brass cylinder*1 Aluminum cylinder*1 Rod, 45-cm Right angle clamp Four-Scale Meter Stick Thread Beaker, 100-mL Beaker, 1-L Glass stir rod Felt-tipped pen with permanent ink Liquid dish soap Distilled water Paper towel 1Any two metal cylinders (of different metals) that can be suspended vertically above their center can be used. FOR THE ENTIRE CLASS Ohaus Scout Pro Balance 400-g	ME-1240 ME-1244 SE-8568 ME-8995 w/ME-8569A w/ME-8736 SE-9444 SE-8695 ME-9875	1 1 1 1 1 1 2 1 1 60 cm 1 1 1 2 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1

PASCO/PS-3815

Lab	Title	Materials and Equipment	PASCO Part Number	Qty
3	FLUID DYNAMICS Students determine the relationship between the velocity of a water stream as it leaves the nozzle at the bottom of a water column and the height of the water column.	FOR EACH STUDENT STATION Four-Scale Meter Stick Water reservoir with a nozzle or hole at the bottom Support stand, 10 cm high Distilled water to fill the water reservoir Water catch basin Pen, felt marker	SE-8695	1 1 1 2 L 1
4	Boyle's Law Students use a pressure sensor and a syringe to determine the inverse proportionality between the pressure and volume of an enclosed gas.	FOR EACH STUDENT STATION Data Collection System PASCO Wireless Pressure Sensor Tubing, 1/8" inner diameter* Male Luer lock connector* Syringe, 60-mL* Scissors	PS-3203 w/PS-3203 w/PS-3203 w/PS-3203	1 1 2 cm 1 1
5	SPHERICAL MIRROR REFLECTION Students use an optics light source, optics track, and half screen to measure the image and object distances associated with the real image formed by a concave spherical mirror and then use principles of reflection and the spherical mirror equation to determine the mirror's radius of curvature.	FOR EACH STUDENT STATION PASCO Optics Track ² PASCO Basic Optics Light Source PASCO Concave Mirror Accessory PASCO Half-Screen Accessory* ² or PASCO Dynamics Track with three Optics Carriages (OS-8472)	OS-8508 OS-8470 OS-8457 w/OS-8457	1 1 1
6	SNELL'S LAW Students use an optics ray table to measure the incident and refraction angles of a light ray travelling from air into a material with unknown index of refraction, and then, using the principles of refraction and Snell's law, they determine the material's index of refraction.	FOR EACH STUDENT STATION PASCO Basic Optics Ray Table PASCO Basic Optics Light Source D-shaped lens*	OS-8465 OS-8470 w/OS-8465	1 1 1
7	FOCAL LENGTH OF A CONVERGING LENS Students use an optics light source, optics track, and viewing screen to measure the image and object distances associated with the real image formed by a converging lens, and then determine the focal length of the lens.	FOR EACH STUDENT STATION PASCO Optics Track ² PASCO Basic Optics Light Source PASCO Basic Optics Viewing Screen PASCO Adjustable Lens Holder Converging lens, 50-mm diameter* ² or PASCO Dynamics Track with three Optics Carriages (OS-8472)	OS-8508 OS-8470 OS-8460 OS-8474 w/OS-8466A	1 1 1 1

Lab	Title	Materials and Equipment	PASCO Part Number	Qty
8	Interference and Diffraction Students shine laser light through a double-slit aperture onto paper, measure the distances between the maxima of the resulting interference pattern, and use the principles associated with double-slit interference and diffraction to determine the spacing between the slits.	FOR EACH STUDENT STATION PASCO Diffraction Plate PASCO Aluminum Table Clamp Rod, 45-cm Three finger clamp Stainless steel calipers Laser pointer with known wavelength Four-Scale Meter Stick White paper Pencil Measuring tape FOR THE ENTIRE CLASS Tape	OS-8850 ME-8995 ME-8736 SE-9445 SE-8710 SE-9716B SE-8695	1 2 2 2 1 1 1 1 1 sheet 1 1 1 roll
9	ELECTRIC FIELD MAPPING Students use a DC power supply and semi-conductive paper to create dipole and parallel plate electrodes, and then use the principles of electric fields and electric potential energy to determine the shape and direction of the electric field lines in each configuration.	FOR EACH STUDENT STATION PASCO Field Mapper Kit Conductive paper* Conductive ink pen* Cork board* Pushpin, metal* Student power supply, 18 VDC, 3 A 4-mm banana plug patch cord with alligator clip* Digital multimeter T-pin, metal Felt-tip marker, silver Pencil	PK-9023 w/PK-9023 w/PK-9023 w/PK-9023 sE-8828 w/PS-3211 or PS-3212 SE-9786A	1 2 sheets 1 1 6 1 4
10	Magnetic Fields Students use an AC/DC electronics laboratory, a power supply, and a Magnaprobe™ wand to detect and compare the magnetic field pattern surrounding a bar magnet and a current-carrying coil.	FOR EACH STUDENT STATION PASCO AC/DC Electronics Lab Kit Wire lead* Student power supply, 18 VDC, 3 A Magnaprobe™ wand Bar magnet 4-mm banana plug patch cord* Magnet wire or enameled wire, 22-gauge Sandpaper Scissors or wire cutters Beaker, 400-mL	EM-8656 w/EM-8656 SE-8828 SE-7390 EM-8620 w/SE-9750	1 1 1 1 2 4 m 1 sheet 1

Lab	Title	Title Materials and Equipment		Qty
11	MAGNETIC FIELD STRENGTH Students use a 3-axis magnetic field sensor and the AC/DC electronics laboratory to determine how the strength of the magnetic field at the center of a current-carrying coil depends on the coil current and radius.	FOR EACH STUDENT STATION Data Collection System PASCO Wireless 3-axis Magnetic Field Sensor PASCO AC/DC Electronics Lab Kit Sensor rod* Wire lead* Student power supply, 18 VDC, 3 A 4-mm banana plug patch cord* PASCO Aluminum Table Clamp Rod, 45-cm Right angle clamp Four-Scale Meter Stick Magnet wire or enameled wire, 22-gauge Beakers of different diameter Sandpaper Scissors or wire cutters	PS-3221 EM-8656 w/PS-3221 w/EM-8656 SE-8828 w/SE-9750 ME-8995 ME-8736 SE-9444 SE-8695	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
12	ELECTROMAGNETIC INDUCTION Students use a voltage sensor to measure the emf induced in a coil as a permanent magnet is passed through it, and then build a measurement-based representation of Faraday's Law of electromagnetic induction.	FOR EACH STUDENT STATION Data Collection System PASCO Wireless Voltage Sensor Strong magnet, cylindrical, 13 mm dia × 5 mm 4-mm banana plug patch cord with alligator clip* Clear rigid plastic tubing, 3/4" inner diameter Magnet wire or enameled wire, 22-gauge No-bounce pad, or similar padding Sand paper, 2" × 2" square	PS-3211 w/EM-8648B w/PS-3211 or PS-3212	1 1 4 2 30 cm 80 cm 1
13	CAPACITOR FUNDAMENTALS Students use a digital capacitance meter and construct capacitors from aluminum foil and paper to determine how physical properties of a parallel- plate capacitor affect its ability to store electric charge.	FOR EACH STUDENT STATION 4-mm banana plug patch cord with alligator clip* Four-Scale Meter Stick Digital capacitance meter, 0.01-nF resolution Aluminum foil sheet, 8 ½" × 11" Paper sheet, 8 ½" × 11" Scissors Heavy textbook	w/PS-3211 or PS-3212 SE-8695	2 1 1 4 6 1
14	SERIES AND PARALLEL CAPACITORS Students use a capacitance meter to measure the equivalent capacitance in simple series and parallel circuits and determine the equivalent capacitance of capacitors connected in series and parallel.	FOR EACH STUDENT STATION PASCO AC/DC Electronics Lab Kit Wire lead* 4-mm banana plug patch cord with alligator clip* Digital capacitance meter, 1-µF resolution Capacitor, 100-µF	EM-8656 w/EM-8656 w/PS-3211 or PS-3212	1 6 2 1 5

Lab	Title	Materials and Equipment	PASCO Part Number	Qty
15	RC CIRCUITS Students use a voltage sensor and a current sensor with the AC/DC electronics laboratory to determine how the potential differences across the resistors and capacitor in a simple RC circuit differ when the capacitor is charging, discharging, and fully charged, and how these differences affect the current through each component in the circuit.	PASCO Wireless Voltage Sensor PASCO Wireless Current Sensor 4-mm banana plug patch cord with alligator clip* PASCO AC/DC Electronics Lab Kit Capacitor 470-uF*	PS-3211 PS-3212 w/PS-3211 or PS-3212 EM-8656 w/EM-8656 w/EM-8656 w/EM-8656	1 1 1 4 1 1 1 1 6 2
16	PLANCK'S CONSTANT Students use a voltage sensor and an AC/DC electronics laboratory to measure the turn-on voltage of various colors of LEDs and then plot the turn-on voltage versus LED frequency to determine the value of Planck's constant.	FOR EACH STUDENT STATION Data Collection System PASCO Wireless Voltage Sensor 4-mm banana plug patch cord with alligator clip* PASCO AC/DC Electronics Lab Kit Wire lead* Resistor, 330-Ω* LED, blue (450–500 nm) LED, green (501–565 nm) LED, yellow/amber (566–620 nm) LED, red (621–750 nm) D-cell Battery	PS-3211 w/PS-3211 or PS-3212 EM-8656 w/EM-8656 w/EM-8656	1 1 2 1 5 1 1 1 1 1 2

^{*} These items are included with the specific kit, apparatus, or sensor used in the experiment.

PASCO / PS-3815 **V**

ACTIVITY BY PASCO ITEM

This table indicates which lab activities use the PASCO scientific sensors or special equipment listed. The quantities shown indicate the number of each item required to complete all the activities that require the specified item.

Items Available from PASCO	PASCO Part Number	Qty	Activity Where Used
PASCO SENSORS			
PASCO Smart Cart, red	ME-1240	1	2
PASCO Wireless 3-Axis Magnetic Field Sensor	PS-3221	1	11
PASCO Wireless Current Sensor	PS-3211	1	15
PASCO Wireless Pressure Sensor	PS-3203	1	1, 4
PASCO Wireless Voltage Sensor	PS-3211	1	12, 15, 16
PASCO LABWARE			
PASCO AC/DC Electronics Lab Kit	EM-8656	1	10, 11, 14, 15, 16
PASCO Adjustable Lens Holder	OS-8474	1	7
PASCO Aluminum Table Clamp	ME-8995	1	2, 8, 11
PASCO Basic Optics Light Source	OS-8470	1	5, 6, 7
PASCO Basic Optics Ray Table	OS-8465	1	6
PASCO Basic Optics Viewing Screen	OS-8460	1	7
PASCO Concave Mirror Accessory	OS-8457	1	5
PASCO Diffraction Plate	OS-8850	1	8
PASCO Field Mapper Kit	PK-9023	1	9
PASCO Optics Track	OS-8508	1	5, 7
PASCO Overflow Can	SE-8568	1	2
PASCO Smart Cart Rod Stand Adapter	ME-1244	1	2
OTHER LABWARE			
Aluminum cylinder	w/ME-8569A	1	2
Bar magnet	EM-8620	1	10
Brass cylinder	w/ME-8569A	1	2
Converging lens, 50-mm diameter*	w/OS-8466A	1	7
Digital multimeter	SE-9786A	1	9
Four-Scale Meter Stick	SE-8695	1	1, 2, 3, 8, 11, 13
Laser pointer with known wavelength	SE-9716B	1	8
Magnaprobe TM wand	SE-7390	1	10
Ohaus Scout Pro Balance 400-g	SE-8756B	1	2
Right angle clamp	SE-9444	1	2, 11
Rod, 45-cm	ME-8736	2	2, 8, 11
Stainless steel calipers	SE-8710	1	8
Strong magnet, cylindrical, 13 mm dia × 5 mm	w/EM-8648B	4	12
Student power supply, 18 VDC, 3 A	SE-8828	1	9, 10, 11
Syringe, 60-mL*	w/PS-3203	1	4

Items Available from PASCO	PASCO Part Number	Qty	Activity Where Used
Thread	ME-9875	60 cm	2
Three finger clamp	SE-9445	2	8

^{*} These items are included with the specific kit, apparatus, or other sensor.